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An Example of Ill-Conditioning in the Numerical 
Solution of Singular Perturbation Problems* 

By Fred W. Dorr 

Abstract. The use of finite-difference methods is considered for solving a singular perturba- 
tion problem for a linear ordinary differential equation with an interior turning point. 
Computational results demonstrate that such problems can lead to very ill-conditioned 
matrix equations. 

1. Introduction. Greenspan [8] has treated the following form of the steady- 
state Navier-Stokes equations: 

P_zz? + 'Pyv in G, 

C+Xo + wv + R(Vt'xw, - 0w) - 0 in G, 

where G = (0, 1) X (0, 1) and R is the Reynolds number. We are interested in the 
asymptotic behavior of J{(x, y) = I{(x, y; R) and w(x, y) = w(x, y; R) as R + Co. 
We impose the Dirichlet boundary conditions 

s6= 0 ondG, 
Il onOG n{(x,y) Ix = Oory =1}, 

w -1 on OG r){(x, y) I x- = or y = O}. 

In this case, we can extend the solution functions VI(x, y) and c(x, y) across the line 
x = y by skew symmetry. Thus we letT- {(x, y) I O < x < y < 1}, and we con- 
sider the problem 

1tz + in'v- -c i T, 

(1) == + cozv + R(Vcoy qv-x) = 0 in T, 

V/ =0 on dT, 

co onaTC {(x,y) Ix Ooryl 1}, 

w 0 onaTf l{(x,y) x=y}. 

Dorr and Parter [5], [6] have considered the following one-dimensional analog of 
Eq. (1): 

Utt(t) = -V(t) (O < t <: ) 

(2) Ew"Q(t) + u'(t)v'(t) = 0 (0 < t < 1), 

u(O) = u(1) = 0, v(O) = vo, v(l) =v, 
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27 2 FRED W. DORR 

where e = 1 /R > 0 and 0 ? vO < v1. For this particular example, we have [5, Theo- 
rem 6]: 

lim u(t, e) = 4(u0 + V1)(t _ t2) (O ? t < 1) 

limv(t,e) = 2(vO +vI) (O < t < 1). 

We remark that u'(t, e) has exactly one interior zero for e > 0, so that Eq. (2) repre- 
sents a singular perturbation problem with an interior turning point. 

The procedure used by Greenspan to generate approximate solutions to Eq. (1) is 
to define a uniform grid of mesh points on T with mesh width h > 0. He replaces 
the differential equations by finite-difference equations, and examines the behavior of 
these discrete solutions as R -4 + o with hI > 0 held fixed. The corresponding finite- 
difference results for the one-dimensional model, Eq. (2), are given in [3], [4]. 

In this paper, we examine in detail the linear problem 

(3) e-w"(t) + (12 - t)w'(t) = 0 (O < t < 1), 

w(O) = vo, v(l) = v1 

The asymptotic behavior of wi(t, e) is the same as that of v(t, e), 

lim w(t, e) = R(v0 + V1) (0 < t < 1) 
*_o+ 

To study the solution of Eq. (3) by finite-difference methods, we define a uniform 
grid of mesh points on the interval [0, 1] with mesh width hi > 0. The differential 
equation is replaced by a difference equation, and we study the behavior of the solu- 
tion to the difference equation as e O-*+ witl i > 0 held fixed. We show in Section 3 
that the solutions to the differential equiation and the difference equation have the 
same asymptotic behavior when the difference equation is defined in the proper 
way. W'e also give in Section 4 somie numerical results whichl slhow that the matrix 
equation corresponding to the ditTerence equation cani be very ill-conditioned. 

A problem similar to Eq. (3) is the following: 

"(t) - (-1 - t)y't(t) = 0 (0 < t < 1), 

o= C, (l) = , 

and then 

lim y(t, e) = 0 if O < t < 1 

= VI if 2 < t ? 1. 

The analysis of the finite-ditTerence equation can also be applied to this problem. 
However, the corresponding matrix equation is not ill-conditioned, and we will 
not consider this particular problem further. Some related computational results 
are given in [4]. 

There are two primary reasons for treating the simple linear example, Eq. (3). 
First, this choice greatly simplifies the presentation of the methods developed in 
[4] to determinle the asymptotic behavior of the solutiolns to the nonlinear difference 
equations correspondiing to Eq. (2). Second, we want to give some detailed com- 
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putational results in this paper, and it is easier to discuss these results for the linear 
problem. Similar computations for the nonlinear problem are discussed in [3], and 
the same type of ill-conditioned behavior is apparent there. 

It should be noted that we cannot obtain the precise behavior of the solution 
to Eq. (3) in the "boundary layers" near t- 0 and t =1 by fixing h > 0 and letting 
e -O 0. There are a number of other methods that can be used to determine the be- 
havior in these boundary layers. For example, Pearson [111], [12] allows the position 
and number of mesh points to vary as e -O 0, and Murphy [9] considers initial-value 
problems with h = e( for a fixed a > 1. We also mention the related work of Price 
and Varga [14] on the use of variational methods for problems with boundary layer 
behavior. 

In Section 2 we introduce the notation and some preliminary results that will 
be used in the remainder of the paper. The asymptotic behavior of solutions to 
difference equations is treated in Section 3. Computational results for the linear 
problem are discussed in Section 4, and in Section 5 we give some special methods 
that can be used to successfully solve this particular problem. 

2. Notation and Preliminary Results. We introduce a mesh size h = 1 /(N + 1) 
(where N is a positive integer), and mesh points xi = jh. Define the following dif- 
ference operators: 

W.(t) [W(t + h) - W(t)] 

W(t) = [W(t) - W(t - h)] 

g 
a (t) =(t) g(t) W(t) if g(t) >: 0, 

= g(t)W(t) if g(t) < 0, 

W(t) [W(t + h)- W(t-h)] 

W (t) W(t + h) -2 W(t) + W(t -h)] 

If W(t) is a smooth function and g(t) is bounded, it is well known that WX(t)- 
W'(t) + O(h), W,(t) = W'(t) + O(h), g(t) aW(t)/ax = g(t)W'(t) + O(h), We(t) = 

W(t) + 0(h2), and W,,(t) = W"(t) + O(h2). 
Let A be an N X N tridiagonal matrix of the form 

b1 C1 0 

a2 b2 C2 

0 aNl 
a bv- CN-1 

L aN bN 
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We then write A = [ai b, ci]. Let Lh be a three-point difference operator of the form 

(4) Lh W(x) a a W(xi-1) + b; W(x,) + c; W(xj,+). 

It is then easy to show that the boundary-value problem 

(5) Lh W(X j) -fj ( I j_! i:!< N), 

W(O) = fo, W(1) = fN+ 1, 

is equivalent to the matrix equation 

AW=f, 

where 

W(X1) 

W - W(X2) 

L W(xN)i 

and 

f, = f1-a,fo if j= 1, 

=f; if 2?j N- I, 

=fIN cNfAN1 if j = N. 

We now prove two useful matrix results. 
LEMMA 1. Let A = (air) be a lower Hessenberg matrix (i.e., aii Ofor j2 i + 2). 

Assume that: (i) a, j,, 5 0 (1 < j < N - 1), and (ii) there exists a vector W such 
that AW = eN, where eN is the Nth unit vector. Then det A # 0. 

Remark. A similar result holds for an upper Hessenberg matrix A if we assume 
that: (i) a,,, - 0 (2 ?j c N), and (;i) there exists a vector W such that AW = e,. 

Proof. Let ATY = 0. Then 

0 WTATY = eY TYN, 

and we can back-substitute in the equation ATY = 0 to find that Y = 0. 
LEMMA 2. Let Lh be the difference operator defined in Eq. (4), and assutme that: 

(6) (i) a1 + b + c; = 0 (I < i ? N), 

(ii) Ci - 0 (1?1? < N). 

Let 4~ - I1j..l (ak/ck), and assume that (1 + Ai 4) P 0. 
Then there is a unique solution to the boundary-value problem given in Eq. (5). 

If f = O for 1 ? j ? N, the solution is given by 

(7) W(xi) = fo + (fN+1 - fo)(I + A I)(i + ) (I - j c N) 
i-i~~~- 

Proof. Let A [a; bi c,] be the tridiagonal matrix corresponding to the operator Lh. 

Equation (7) can be used to exhibit a solution to the equation AW = eN, and the 
result then follows from Lemma 1. 
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Remarks. (i) Under the conditions given in Eq. (6), it can be shown that 

N \N 

(8) det A ( I1)N(1 + ? Ai) Iici, 

so that the proof of the nonsingularity of A is immediate. However, we have stated 
the lemmas in this form because we need the representation in Eq. (7) later in the 
paper, and also because Lemma 1 is interesting in its own right. We also note that 
Eq. (8) can be used to show that the representation in Eq. (7) is actually Cramer's rule 
for the matrix A. 

(ii) A result similar to Lemma 2 holds if we assume that a, - 0 (1 ? j < N) 
in Eq. (6), and also that (1 + N ri) o 0 where ri = J i (ck/ak) (cf. [4, Lemma 3]). 

3. Asymptotic Behavior of Solutions to Difference Equations. We now con- 
sider the linear boundary-value problem given in Eq. (3). The first difference equation 
treated is 

a W(x ) 
W$2(X,) + (2 -X;) dx (1 < j < N), 

(9)x 
W(O) = vo, W(1) = v,. 

We examine the asymptotic behavior of W(xi, e) as e -+ 0+ with h > 0 held fixed. 
THEOREM 1. For each e > 0 there is a unique solution W(xi, E) to Eq. (9), and 

lim W(xi, e) - 2(vo + v1) (1 ? j ? N). 
6-40+ 

The proof follows easily from Lemma 2. Note that the asymptotic behavior 
of W(xj, e) is the same as that of w(t, e). If Lh is the difference operator given by 

Lh W W+ ( - 
xi) 

49w 
(> 0), 

then LA is an operator of positive type (cf. [4]). This fact immediately implies that 
Eq. (9) has a unique solution, and in fact W(xi, E) is a monotone increasing function 
of xi for each fixed e > 0. Since w(t, e) also has this property, we see that W(x;, E) 
does indeed provide a qualitatively satisfactory approximation to w(t, e). 

As we remarked earlier, the difference operator a W(t)/Ox is a first-order ap- 
proximation to W'(t) (i.e., a W(t)/Ox = W'(t) + 0(h)), while W4(t) is a second-order 
approximation to W'(t) (i.e., Wx{(t) = W'(t) + 0(h2)). The next result shows that 
one should not always use a "more accurate" approximation to a differential operator. 
Rather, the choice of a difference operator must depend on the problem under 
consideration. 

THEOREM 2. Consider the difference equation 

(10) eWA(X) + (2 - -x) W X = 0 (1 ?J 
j N), 

W(O) = vo, W(1) = vI. 

Then there exists an to = eo(h) > 0 such that Eq. (10) has a unique solution W(xj, e) 
for 0 < e c e0. The asymptotic behavior is the following, where M = [(N + 1)/2]: 
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ease 1. N even. 

rim W(x;, e) = v0 if i is even, 

=v1 if i is odd. 

Case 2. N odd, M odd. 

lim W(xi, e) = 2(vo + v1) if j is odd, 

= vO if j is even, 2 < j < M - 1, 

= VI if jiseven, M+ 1 1 N- 1. 

Case 3. N odd, M even. If j is odd, 

rim W(x j,)= +o0 if 1 < j< M- 1, 

CO- if M+ 1 j < N. 

If j is even, we let 
j/2 

-yj = 2h Ej (2 -X2i-1) 
i 1 

and then 

i'm W(Xi'0 e)vo + (vi v0) 2tta if 2 _ j <M, 

= v -(v1 vo)(7 +Ii) if M + 2 < ? < N- 1. 

The proof of the theorem again follows from Lemma 2. Observe that for small 
values of e the solution W(xi, e) to the centered difference equation, Eq. (10), is not 
monotone in xi. It is possible to define a second-order approximation to W'(t) so 
that the solution to the corresponding difference equation is monotone (e.g., see 
[13, Section 3]). However, this approximation yields a four-point difference operator, 
and the techniques used in this section cannot be used to determine the asymptotic 
behavior of the solution to the difference equation. 

4. Computational Results. We now consider the computational aspects of 
solving the difference equations. As we have seen in Section 3, it is essential to use 
the difference a W/dx if we want to let e -> 0+ with h > 0 held fixed. We therefore 
consider the particular problem 

e W.f(Xd) + (2 - WX; ) -= (1 ?< j -< , 

W(O) = 1, W(1)= 3. 

This is equivalent to the matrix equation 
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-a1 

AW= . _Y 

_ -3CNI 

where A A(e) [ai bi Cj], 

a= - ifN ?1< [ 2 ] 

a, h2 2 if I < i < N h Iz2~Ji 2jJv 

h2 1 (2FN)f <-[ +I 

_ _ if L + 1 < j N, 

and b, - -(a, + c;). Notice that the coefficients satisfy 

ai < xi)// if I 1 j < N),I 

c< -E/h< (1 < j N). 

We first list some relevant properties of the tridiagonal matrix A: 
(i) A is irreducibly diagonally dominant, and hence nonsingular [15, p. 23]. 

Furthermore, A is an M-matrix, and A-' > 0 [15, p. 85]. 
(ii) A is symmnetrizable [16, pp. 335-336]. That is, there is a positive definite 

diagonal matrix D such that D-'AD is symmetric. 
(iii) The eigenvalues of A are positive, so that D-'AD is positive definite [15, p. 23]. 
(iv) The Gauss-Seidel and Jacobi iterative methods for solving AW = Y both 

converge [15, p. 84 and pp. 107-108]. Furthermore, if Pas [pJ] is the spectral radius 
of the Gauss-Seidel [Jacobi] iteration matrix, then PGs s P < 1. 

Because of these properties, it would' seem to be a relatively easy matter to solve 
the equation AW = Y. In Table I we summarize some computational results for 
this problem with N 100 and four values of e. Although only the 50th component 
of W(xj, e) is given, the behavior is typical of the form of the solution. The methods 
of solution used are: 

(1) Double-precision Gaussian elimination with no interchanges, in the form 
W = = di + (1 + e3)W,+1. 

(2) Gaussian elimination with row interchanges. 
(3) Gaussian elimination with no interchanges, in the form W; = di + ejWj,. 
(4) Gaussian elimination with no interchanges, in the form W, = di + e, W+ 1. 
(5) Gaussian elimination with no interchanges, in the form W; = di +(I +e2) WJ,+1. 

(6) A method due to Babuska [1, pp. 15-16],** which can be derived by com- 
bining methods (3) and (4). 

* * In a recent report [2], Babuska has described another variant of Gaussian elimination which 
he has successfully applied to this problem. 
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TABLE I 

Solutions to the Difference Equation 

ICW.(X1) + (12 - X)-0 iW(x) = 0 (1 < j 100), 

W(O) = 1, W(I) 3. 

W(X50) 

after one step 
Maximum of iterative Maximum Time 

c- Method W(x50) Residual refinement Residual (sec.) 

0.01 1 2.000 10-' 
1 2 

* 

2 2.000 10-11 2.000 10-12 0.086 
3 2.000 10-12 2.000 10-12 0.008 
4 2.000 10-12 2.000 10-12 0.008 
5 2.000 0o-12 2.000 10-12 0.010 
6 2.000 10-7 2.000 10-12 0.012 
7 2.000 10-11 2.000 10-12 0.032 
8 1.006 10-4** 2.006 10-7** 45.278 

0.003 1 2.000 10-' 
1 2 

* 
2 2.271 10-12 2.089 10-12 0.080 
3 2.072 10-12 2.102 10-12 0.006 
4 2.074 10-12 2.102 io-12 0.006 
5 2.000 10-12 2.098 10-12 0.006 
6 2.127 0.94 2.103 10-2 0.010 
7 1.751 10-12 2.044 10-12 0.028 
8 1.000 10-11 2.000 10-10 0.610 

0.001 1 2.000 10-12 * * 

2 **8 t* *** *** * 

3 -10-8 1o-13 1o-6 10-13 0.006 
4 -io-8 10-14 lo-6 10-13 0.008 
5 2.000 10-12 1011 lo-1 0.008 
6 t*** ***t *** * 

7 10-11 10-14 lo-11 10-13 0.030 
8 1.000 10-11 2.000 10-11 0.154 

1010 1 3.000 10-13 * * * 

2 8** *** *** ***** 

3 *** ***te ***88 

4 *** *** *** ****e 

5 3.000 10-12 3.000 101l2 0.010 
6 *8 ** *** ***ss 

7 *** *** *** *** e 

8 1 .000 i0'l3 2.000 1012S 0.016 
* Not applicable. 

** Failed to converge in 10,000 iterations. 
* ** Method failed due to either overflow or underfiow in arithmetic operations. 
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(7) A method that symmetrizes A, and then uses Cholesky decomposition. 
(8) Gauss-Seidel iteration with initial guess WP0- 1. The criterion for con- 

vergence is that the maximum relative difference between successive iterates be 
less than l012. 

We remark that all of the computations discussed in this paper were performed 
on a CDC 6600 computer. 

A number of comments should be made about these numerical results: 
(i) For e- = 0.01, the rate of convergence of the Gauss-Seidel method is very 

slow, which means that PGs is very close to 1. For e- =0.001, PGS has increased, and 
yet the rate of convergence appears to be much faster. In addition, for e- = 0.001 
the application of Gauss-Seidel before the step of iterative refinement "converges" 
to the incorrect solution W(xj, e) _ 1. The explanation behind this apparent con- 
tradiction is that the correction in each iteration of Gauss-Seidel is so small that 
the method appears to have converged, even though this is not the case. The sig- 
nificance of this example is to again demonstrate the well-known fact that one cannot 
always determine whether an iterative method has converged by simply looking 
at the difference between successive iterates. 

(ii) For E = 0.003, note that all of the methods (except (6)) give answers that 
look quite reasonable, but which are nevertheless incorrect. Also note that these 
erroneous solutions yield very small residuals. 

(iii) For E 0.001, all of the single-precision methods show a marked degree of 
numerical instability. We remark that the double-precision method (1) also fails 
for E small enough, as the result for E = 10-10 demonstrates. 

These results indicate that the matrix A(E) is becoming very ill-conditioned even 
for values of e that are not very small (e.g., E = 0.003). Let 0 <X1 ? X2 . .*. N * 

be the eigenvalues of the difference matrix A(E). For E = 0.003 and N 100, we 
have calculated these eigenvalues numerically: 

X1 = 1.8136 X 10-12 

2- =1.0000 

3- =t1.9326 

X99 = 199.8746 

Xloo = 199.8746. 

Thus we can calculate the approximate condition number 

="? 1.1021 X 1014. 
xl 

The single-precision word on the CDC 6600 computer corresponds to 14 or 15 
decimal digits, which explains why we are having computational instability in the 
neighborhood of E - 0.003. 

It is interesting to note that preconditioning [7, pp. 9-10] does not significantly 
help in this problem. For E = 0.003 and N = 100, the eigenvalues of the precon- 
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ditioned symmetrized difference matrix are 

XI = 2.7590 X 10-14 

2= 1.4137 X 10-2 

X3 = 2.6297 X 10-2 

X99)= 1.9859 

Xloo = 2.0000, 

and the approximate condition number is 

x -oo = 7.2491 X 1013. 

We have computed the spectral radius of the Gauss-Seidel iteration matrix 
for e = 0.003 and N = 100, and we have 

Pas =1 - (5.5179 X 10-14). 

Thus the rate of convergence is extremely slow. The eigenvector corresponding 
to the largest eigenvalue is positive, so it cannot be orthogonal to the initial error 
(which is eO - Wi - WO - 2 - I > 0). 

In Table II we give some values of the smallest eigenvalue X1(e) of the difference 
matrix A(e) for various values of e. The values in the table are for a fixed N = 100, 
but the results for other values of N are similar. If M = [(N + 1)/2], it can be shown 
that 

det (A(0)-XI) =X(X 1) H(X V+) if N is even, 

Ml-1 

=-X H(_X j)2 if N is odd. 
j =1 

Thus we see that 
lim XI(e) 0, lim X2(0)- 1, 
eO40+ feO+ 

lim XN(E) = (N 1) 
e-40+2 

so that the difference matrix is becoming ill-conditioned as e -* 0. For small values 
of E, we therefore cannot hope to use these simple direct methods, and we will discuss 
some special techniques for this problem in the next section. 

It is interesting to note that we can actually find the rate at which Xj(E) is con- 
verging to 0. Following a suggestion of Professor Ben Noble [10], we write 

N Nr 

(11) E I _ E (A-E 
i-l Xi i=l 

Using the representation in Eq. (8), it can be shown that 

(1 + Ek=1 Ak)(jk.i Ak) (12) (A1)( + = - 
N 

cjA,(1 + Ek- Ak) 
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TABLE II 
Smallest Eigenvalue X,(E) of the Difference Matrix A(e) (Nr- 100) 

E X1(E) E X1(E) 

0.100 0.58 0.0029 9.0 X 10-13 
0.090 0.49 0.0028 4.3 X 10-13 
0.080 0.40 0.0027 2.0 X 10-13 
0.070 0.31 0.0026 8.7 X 10-14 
0.060 0.23 0.0025 3.6 X 10-14 
0.050 0.16 0.0024 1.4 X 10-14 
0.040 0.090 0.0023 5.4 X 10-15 

0.030 0.038 0.0022 1.9 X 10-15 
0.020 7.1 X 10-3 0.0021 6.1 X 1016 
0.010 6.2 X 10-5 0.0020 1.8 X 10-16 
0.009 2.3 X 10-5 0.0019 5.0 X 10-17 
0.008 6.8 X 106 0.0018 1.3 X 10-17 
0.007 1.5 X 10-6 0.0017 2.8 X 10`8 
0.006 2.1 X 10-7 0.0016 5.4 X 10`9 
0.005 1.6 X 10-8 0.0015 9.0 X 10-20 
0.004 4.2 X 10-1O 0.0014 1.3 X 10-20 
0.003 1.8 X 10-12 0.0013 1.5 X 10-21 

0.002 1.8 X 10-16 0.0012 1.3 X 10-22 

0.001 4.4 X 10-25 0.0011 9.1 X 10-24 

Equations (11) and (12) can then be used to show that 
M-1 

rim e MX1(E) = hM+l HI (l - x) if N is even, 
6-40+ i-e 

M-1 

= (hM+ H (2 -x2)) if N is odd, 

where M = [(N + 1)/2]. The terms in the right-hand side of this equation grow 
very rapidly as h decreases. For example, for the case N = 100 which we previously 
considered, this result is 

lim C50X1(e) = 5.5870 X 10136. 

5. Special Methods. We now discuss three special methods that can be applied 
to solving Eq. (9). Two of these techniques can also be applied to more general 
problems (for example, when the turning point is at t = o E (0, 1) instead of at t-= 
However, we will not pursue such generalizations in this paper. 

Method 1. For a given e > 0, we defi4e a sequence E1 > C2 > . > Ck- E 

We choose E1 so that W(xj, e1) can be computed by a stable direct method, and 
then we solve for W(x,, ji,) by Gauss-Seidel iteration with initial guess W(xj, E1). 

This method has proved to be satisfactory, although it is quite slow. The primary 
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disadvantage is that, in general, one wouldJ have difficulty in choosing parameters 
Ei (1 ? i ? k - 1) that would ensure that this method of computation is stable. 

Method 2. We can solve the system directly from the representation given 
in Eq. (7), 

W(xi) = Vo + (VI - o)(I + A i)( + >i) (I :Sj N), 

where A, = Ilk= (ak/ck). The problem, of course, is that it may be difficult to cal- 
culate A, for 1 ? i ? N, but there are two ways of avoiding this difficulty: 

(i) Use the symmetry of the problem. Using the definitions of a,, bi, and c;, it 
is easy to show that the coefficients satisfy: 
N even, M = N/2: 

aM+ cM+1_; (1 <j < M), 

Cm+i = aM+ (1 < j < M), 

Am j=Am-i (1 < j < M -1), 

AN = 1; 

N odd, M = (N + 1)/2: 

am+ i cM-j (1 < j < M -1), 

cM+ - aM-; (1 j < M -1), 

AM+i j M-;-1 (I :< j <!! M -2),9 

AN = 1. 

Using these relations, we see that it is necessary only to calculate Ai for 1 < i ? M. 
Since 0 < Ai+1 < Ai for 1 ? i < M - 1, these values can easily be computed. 

(ii) Factor out the power of e in Ai. For example, consider the case of even N 
in the above problem, and let M= N/2. Then 

A [i 1 (2 k)1 if 1 i M, 

= [f (fC)] [ak ()] if M + 1? i ? N. 

Since 

aCk (I1?k?M) -ck e + h( - xk ) 

and 

-a = h( 
1 

- Xk) (M + 1 k < N), 
Ck 

it is easy to calculate Ai in this form. It is clear that this procedure can be adapted 
to the case of odd N, and also to problems of this form in which the turning point 
is not at t = 2. 

Method 3. In this particular problem, we can use the symmetry relations dis- 
cussed above to find that: 
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N eveni, M N/2: 

W(XAf +) = ? v0 - W(XM+1_) (1 ? ] M); 

N odd, M - (N + 1)/2: 

W(XM+j) = Vi + VO- W(XM_;) (O <j M - 1). 

If N is odd and M (N + 1)/2, it follows that W(x,,) = 4(vo + v1). Thus Eq. (9) 
is equivalent to the smaller problem 

EW.A(Xi) + (2 - Xi) )- (1 ? j < M - 1), 

W(O) = Vo, W(2) = 2(Vo + Vi). 

The matrix corresponding to this system is not ill-conditioned and, since we have 
reduced the dimension of the linear system by a factor of 2, the method is also very 
fast. However, it cannot be applied directly to the case of even N, and clearly does 
not generalize to nonsymmetric problems. 
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